Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 57(2): 302-308, Mar.-Apr. 2014. ilus, graf
Article in English | LILACS | ID: lil-705753

ABSTRACT

The aim of this study was to analyze the effect of depth on the hydrodynamic drag coefficient during the passive underwater gliding after the starts and turns. The swimmer hydrodynamics performance was studied by the application of computational fluid dynamics (CFD) method. The steady-state CFD simulations were performed by the application of k - omega turbulent model and volume of fluid method to obtain two-phase flow around a three-dimensional swimmer model when gliding near water surface and at different depths from the water surface. The simulations were conducted for four different swimming pool size, each with different depth, i.e., 1.0, 1.5, 2.0 and 3.0 m for three different velocities, i.e., 1.5, 2.0 and 2.5 m/s, with swimmer gliding at different depths with intervals of 0.25 m, each starting from the water surface, respectively. The numerical results of pressure drag and total coefficients at individual average race velocities were obtained. The results showed that the drag coefficient decreased as depth increased, with a trend toward reduced fluctuation after 0.5m depth from the water surface. The selection of the appropriate depth during the gliding phase should be a main concern of swimmers and coaches.

2.
Braz. arch. biol. technol ; 55(6): 851-856, Nov.-Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-660332

ABSTRACT

The purpose of this study was to analyse the effect of wearing a swimsuit on swimmer's passive drag. A computational fluid dynamics analysis was carried out to determine the hydrodynamic drag of a female swimmer's model (i) wearing a standard swimsuit; (ii) wearing a last generation swimsuit and; (iii) with no swimsuit, wearing light underwear. The three-dimensional surface geometry of a female swimmer's model with different swimsuit/underwear was acquired through standard commercial laser scanner. Passive drag force and drag coefficient were computed with the swimmer in a prone position. Higher hydrodynamic drag values were determined when the swimmer was with no swimsuit in comparison with the situation when the swimmer was wearing a swimsuit. The last generation swimsuit presented lower hydrodynamic drag values, although very similar to standard swimsuit. In conclusion, wearing a swimsuit could positively influence the swimmer's hydrodynamics, especially reducing the pressure drag component.

3.
Braz. arch. biol. technol ; 53(2): 437-442, Mar.-Apr. 2010. ilus
Article in English | LILACS | ID: lil-546576

ABSTRACT

The purpose of this study was to develop a three-dimensional digital model of a human hand and forearm to apply Computational Fluid Dynamics to propulsion analysis in swimming. Computer tomography scans of the hand and forearm of an Olympic swimmer were applied. The data were converted, using image processing techniques, into relevant coordinate input, which could be used in Computational Fluid Dynamics software. From that analysis, it was possible to verify an almost perfect agreement between the true human segment and the digital model. This technique could be used as a means to overcome the difficulties in developing a true three-dimensional model of a specific segment of the human body. Additionally, it could be used to improve the use of Computational Fluid Dynamics generally in sports and specifically in swimming studies, decreasing the gap between the experimental and the computational data.


O objetivo do presente estudo foi desenvolver um modelo digital tridimensional de uma mão e um antebraço humano para aplicar a Dinâmica Computacional de Fluidos ao estudo da propulsão em natação. Foram aplicados procedimentos computorizados de tomografia axial na mão e antebraço de um nadador Olímpico. Através de técnicas de processamento de imagem, os dados foram convertidos em coordenadas tridimensionais, que podem ser utilizadas em programas de simulação computacional. Através dos resultados encontrados, foi possível verificar uma semelhança quase perfeita entre o segmento humano e o modelo digital. Esta técnica pode ser utilizada como uma forma de ultrapassar as dificuldades em desenvolver um modelo digital tridimensional de um segmento específico do corpo humano. Complementarmente, pode ser bastante útil na melhoria da utilização da Dinâmica Computacional de Fluidos no Desporto, de uma forma geral, e, mais especificamente, nos estudos em natação, diminuindo a diferença entre a investigação experimental e a investigação computacional.

SELECTION OF CITATIONS
SEARCH DETAIL